
Image Feature Extraction Using Independent Component AnalysisJarmo Hurri, Aapo Hyvärinen, Juha Karhunen, and Erkki OjaHelsinki University of Technology, Laboratory of Computer and Information ScienceRakentajanaukio 2 C, FIN-02150 Espoo, FINLANDEmail: {Aapo.Hyvarinen, Juha.Karhunen, Erkki.Oja}@hut.�ABSTRACTIn Independent Component Analysis, one tries tomodel the underlying data so that in the linear ex-pansion of the data vectors the coe�cients are asindependent as possible. This often leads to natu-ral features characterizing well the data. In this pa-per, we present some results on applying IndependentComponent Analysis to image data. This has becomepossible by using a recently developed, computation-ally highly e�cient �xed-point learning rule. The re-sulting feature masks are sensitive either to lines andedges of varying thickness or to local spatial featuresand frequencies.1. INTRODUCTIONIndependent Component Analysis (ICA) [1] is a re-cently developed statistical technique which oftencharacterizes the data in a natural way. It can beviewed as an extension of standard Principal Com-ponent Analysis (PCA), where the coe�cients of theexpansion must be mutually independent (or as inde-pendent as possible) instead of being merely uncor-related [1, 4]. This in turn implies that higher-orderstatistics are required for determining the ICA expan-sion, even though the expansion itself is linear.To this date, the ICA model has been applied al-most exclusively to blind source separation and blinddeconvolution. In blind source separation, one tries toseparate a few independent but unknown source sig-nals from their linear mixtures without knowing themixture coe�cients [2, 3]. However, ICA should beapplicable to a much wider class of problems, such asfeature extraction, data compression, and signal anal-ysis to mention a few [1, 3]. One obvious explanationfor the lack of applications of ICA in these areas isthat the expansion is much more di�cult to computethan standard PCA for example. No closed-form orsimple numerical solution is available, and one mustresort to iterative techniques. The existing batch-type techniques [1] for estimating the ICA expansionare computationally demanding. Simpler neural tech-niques [2, 3] have di�culties with convergence whenthe dimensionality of the data is higher than about10, and they can be applied only to certain types ofdata.

However, we have recently developed a fast andcomputationally simple �xed-point rule [5, 6] for com-puting the independent components. Furthermore,one can prove the convergence of this learning ruletheoretically, and the algorithm can be applied togeneral data. These new developments make it pos-sible to apply ICA to analyses of higher-dimensionaldata.In this paper, we apply ICA to image feature ex-traction. For this purpose, many di�erent methodshave been proposed ranging from simple �xed masksto fairly sophisticated approaches [7, 8]. In particular,the related PCA expansion has been successfully ap-plied to extracting 'eigen�lters' that characterize tex-tures [9]. Besides feature extraction, PCA has severalother applications in image processing, such as com-pression of (especially multispectral) images, imagerotation etc. [7, 8]. Therefore, we expect that therelated but information theoretically more meaning-ful ICA expansion will turn out to be a useful tool inimage processing.This paper presents our �rst results on this topic,showing that the basis vectors of ICA indeed repre-sent interesting features in natural images. They de-scribe spatial frequency information, edges with dif-ferent orientation etc. The basis provided by ICA isdata dependent, and it is found in a completely un-supervised manner from the original image data.Probably the only paper that is closely related toours is [10]. There Bell and Sejnowski use their sourceseparation algorithm for �nding ICA �lters from im-ages. However, our methods di�er in several ways.We use a di�erent separating algorithm that can beapplied to more general data sets, preprocess thedata di�erently, and consider the basis vectors of ICArather than ICA �lters.2. INDEPENDENT COMPONENTANALYSISDenote by x(t) = [x1(t); : : : ; xn(t)]T the n-dimensional t:th data vector, in our case an imagewindow scanned into a vector of pixel gray levels.It is assumed that the data vectors x(t) have somecommon unknown zero-mean non-Gaussian statisti-cal distribution. In Independent Component Analy-



sis, we try to �nd for the data vectors x(t) the expan-sionx(t) = As(t) + n(t) = mXi=1 si(t)ai + n(t): (1)Here the vector s(t) = [s1(t); : : : ; sm(t)]T contains them independent components (or source signals) si(t)for the data vector x(t). A = [a1; : : : ; am] is a con-stant full-rank n�m matrix, often called the mixingmatrix. The vectors ai, i = 1; : : : ;m, are the basisvectors of ICA; see [1, 3]. The additive noise termn(t) (describing modeling errors) is usually omittedfrom (1), because it is in practice impossible to sepa-rate noise from the independent components withoutsome additional a priori information.In the ICA model (1), the number of independentcomponents m is often �xed in advance. In any case,m � n, and often m = n. The expansion (1) isdetermined by requiring that the coe�cients si(t),i; : : : ;m, are mutually independent (or in practiceas independent as possible). Then the basis vectorsai are generally not mutually orthogonal. This canbe compared with standard PCA, where the form ofthe expansion is the same but the basis vectors aimust be mutually orthogonal and the coe�cients si(t)have maximal variances. In many cases, the orthog-onality requirement of PCA is a somewhat unnat-ural technical constraint, whereas the independencerequirement of ICA is plausible from an information-theoretic point-of-view.The independent components are found by deter-mining an m � n separating matrix B so that them-vector y(t) = Bx(t) (2)becomes an estimate y(t) = ŝ(t) of the independentcomponent vector s(t). The task becomes easier, ifthe data vectors x(t) are preprocessed by whitening(sphering) them: v(t) = Vx(t): (3)Here v(t) denotes the t:th whitened vector, and V isanm�n whitening matrix. Whitening can be done inmany ways [3]. Standard PCA is often used, becauseone can then simultaneously optimally compress thedata vectors into an m-dimensional signal subspace(in the mean-square error sense) and �lter out someof the possible noise. The PCA whitening matrix isof the form V = D�1=2ET , where the columns ofthe matrix E contain the PCA eigenvectors, and thediagonal matrix D has the corresponding eigenvaluesas its elements.After prewhitening the subsequent separating ma-trix, denoted here for clarity by WT , can be takenorthogonal: WTW = Im. The separating equationis then y(t) =WTv(t): (4)

As a separating criterion, the kurtoses Efyi(t)4g�3[Efyi(t)2g]2 of the components yi(t) of the vec-tor y(t) are especially suitable. It can be shownthat the independent components are found fromthe local maxima of the modulus of the kurtosis forprewhitened data. The �xed-point algorithms intro-duced in [5, 6] can be used for �nding these localmaxima very e�ciently.3. METHODSThe n-dimensional data vectors x(t) were obtainedby �rst taking n1=2�n1=2 sample subimages from theavailable image database. After this, the mean of itselements was subtracted from each raw data vectorx(t), which was then normalized to unit length. Thispreprocessing makes the data vectors approximatelyzero mean also in the standard statistical sense. Thepreprocessed vectors were then whitened using stan-dard PCA so that the resulting vectors v(t) had n�1components (one of the components becomes insignif-icant because of the subtracted mean).After this, the generalized �xed-point algorithm de-scribed in full detail in [6] was applied to �nding theindependent components of the whitened data vec-tors v(t). In this algorithm, one �rst chooses someinitial values for the columns wi (i = 1; : : : ;m) of thematrixW (rows of the orthogonal separating matrixWT ). The key step in the generalized �xed-point al-gorithm is to compute a new (k + 1):th estimate forwi using the iterationw�i (k + 1) = Efvg(wi(k)Tv) � g0(wi(k)Tv)wi(k)g;(5)wi(k + 1) = w�i (k + 1)= k w�i (k + 1) k : (6)Here E denotes the mathematical expectation. Inpractice it is replaced by sample mean computed us-ing a large number of vectors v(t). The function g(u)can be any odd, su�ciently regular nonlinear func-tion, and g0(u) denotes its derivative. The choice g(u)= u3 directly maximizes the kurtosis criterion. Inpractice, it is often advisable to use a robust nonlin-earity that grows less than linearly; a typical choiceis g(u) = tanh(u). This also has a relationship tothe kurtosis criterion. For preventing the vectors wi,i = 1; : : : ;m, from converging to the same directions,they are orthogonalized against each other. This canbe done either sequentially by using a de�ation typeprocedure, or symmetrically [5, 6].It can be proven [6] that wi(k) converges (up to thesign) to one of the columns of the matrix W undervery mild conditions. The convergence of the �xed-point algorithms is cubic, and our experiments showthat usually less than 10 iterations provide su�cientlyaccurate estimates. This means that the �xed-pointalgorithms are very fast when compared with typ-ical gradient-based adaptive blind separation algo-rithms. Another advantage is that they don't require



any learning parameters. The �xed-point algorithmis also much simpler than the currently best knownbatch algorithm introduced in [1].From wi one can compute the estimate for the cor-responding basis vector ai of ICA [2] using the for-mula âi = ED1=2wi: (7)4. EXPERIMENTAL RESULTSOur raw data consisted of 15 di�erent images repre-senting various natural objects or scenes (river valley,harbour, forest, frog etc.). The size of subimages was12� 12, yielding thus 143-dimensional whitened vec-tors v(t) and 143 estimated ICA basis vectors âi. Thesubimages were taken randomly from much largeroriginal images, and their total number was 10000.Figures 1 and 2 show examples of typical resultsobtained thus far. The subimages show the 143 es-timated basis vectors of ICA. Each of them is repre-sented again as a 12� 12 subimage. The subimageshave been normalized so that in each of them theaverage gray level is 127, and the gray level rangehas been linearly expanded to maximum possible inthe used interval [0; 255]. These subimages can beregarded as features describing the most signi�cantcharacteristics of the analyzed image data.Figure 1 shows the estimated ICA basis vectorswhen the nonlinear function in the generalized �xed-point algorithm was the sigmoid g(u) = tanh(u). Itcan be seen that most of the ICA basis vectors corre-spond to wavelet type �lters that are sensitive to localfeatures and spatial frequencies in the images. How-ever, a part of the estimated basis vectors of ICA yield�lters that are sensitive to edges and lines of varyingthickness in di�erent orientations. When di�erent ini-tial values were used in the �xed-point algorithm, theresults were qualitatively fairly similar. However, theestimated basis vectors of ICA were somewhat di�er-ent when inspected more closely. This suggests thatthe total number of "independent" features in the an-alyzed images may be larger than the dimensionalityof subimages.Figure 2 depicts the results of a similar experimentwhere the nonlinearity g(u) = u3 was used in the gen-eralized �xed-point iteration. Now many of the basisvectors correspond to high global spatial frequencieswhile others pick up some very local features. Anexplanation of the qualitatively di�erent results com-pared with Figure 1 is that the fast growing nonlinear-ity g(u) = u3 is sensitive to large values of u, whichdetermine the results almost solely. This e�ect canbe reduced by normalizing the local variances in theimages, and by estimating only the most signi�cantbasis vectors of ICA, which are found by compressingthe data into a lower dimensional PCA subspace. Af-ter such processing steps, the estimated basis vectorsof ICA change so that they resemble more the basis
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Fig. 1. ICA basis vectors obtained using the tanh nonlinearity.

Fig. 2. ICA basis vectors obtained using cubic nonlinearity.


